ПЕРЕТОВОРЕННЯ ФУР'Є ЗАГАЛЬНИХ СТОХАСТИЧНИХ МІР

УДК 519.21

В. М. РАДЧЕНКО І Н. О. СТЕФАНСЬКА

Анотація. В роботі визначено перетворення Фур'є загальних стихастичних мір в \(\mathbb{R}^d \), доведено теорему про обернення цього перетворення та про зв'язок зі зв'язністю стихастичних інтегралів. Наведено приклади застосування цих результатів до рівняння теплопровідності.

ABSTRACT. The Fourier transform of general stochastic measures in \(\mathbb{R}^d \) is defined. The inversion theorem for this transform is proved, connection with convergence of stochastic integrals is established. Example of applying for convergence of solutions of stochastic heat equation is considered.

Анотація. В роботі визначено перетворення Фур'є загальних стихастичних мір в \(\mathbb{R}^d \), доведено теорему про обернення цього перетворення та про зв'язок зі зв'язністю стихастичних інтегралів. Наведено приклади застосування цих результатів до рівняння теплопровідності.

1. Вступ

Нехай \(\mu \) — досить стихастична міра на борелевій \(\sigma \)-алгебрі \(\mathcal{B} \) в \(\mathbb{R}^d \) (див. ознаки 2.1 нижче). Перетворення Фур'є для \(\mu \) має вигляд рівності

\[
\hat{\mu}(t) = \int_{\mathbb{R}^d} e^{-2\pi i(t,x)} \, d\mu(x), \quad t \in \mathbb{R}^d.
\]

Дана рівність є аналогом спектрального представлення стаціонарних випадкових процесів, де \(\mu \) — стихастична міра з ортогональними значеннями, і таке представлення є власною частиною дослідження процесу. Теорія інтегрування дійсних функцій за загальними стихастичними мірами (див., наприклад [1], [2]) дає можливість розглянути тут досить широкий клас \(\mu \). Вивчення властивостей опірного перетворення \(\hat{\mu} \) є основою метою даної роботи. При цьому вивчалося зручним визначення інтеграла від випадкової функції в сенсі роботи [3].

Для невипадкової скінченої \(\mu \) дане перетворення є аналогом характеристичної функції. Певний аналог класичного твердження про слабкі зв'язність розподілів отримано в даній роботі для стихастичних мір (теорема 4.1).

Роботу побудовано наступним чином. В пункті 2 наведено потрібні нам теоретичні відомості, в частині 3 отримано теорему про обернення перетворення Фур'є. В пункті 4 доведено теорему про зв'язок зв'язністю поєднань \(\mu \), \(\hat{\mu} \) та \(\mu \), застосування цього твердження для дослідження стихастичного рівняння теплопровідності наведено в пункті 5.

2000 Mathematics Subject Classification: Primary 60G35, 60H15, 60H05.

Ключові слова та фрази: Стохастична міра, перетворення Фур'є випадкових процесів, слабка зв'язність, стихастичне рівняння теплопровідності.
2. ПОПЕРЕДНІ ВІДОМОСТІ

2.1. Стохастичні міри. Нехай \(B = \mathcal{F} \) — \(\sigma \)-алгебра борелевих підмножин \(\mathbb{R}^d \), \(\mathcal{F} = (\Omega, \mathcal{F}, P) \) — повний ймовірнісний простір. Через \(L_0 = L_0(\mathcal{F}, P) \) позначимо міну вісім випадкових величин (теорія квазичисел, їхніх класів \(\mathcal{F} \)-квазіаддитивності). Збігність в \(L_0 \) означає збіжність за ймовірнісно.

ОЗНАЧЕННЯ 2.1. Стохастичною мірою (СМ) на \(B \) називається \(\sigma \)-аддитивне відображення \(\mu : B \to L_0 \).

Ми не накладаємо на \(\mu \) ніяких вимог невід'ємності чи існування моментів. В [1] таку функцію ми називаємо загальною стохастичною мірою.

Наведемо деякі приклади. Якщо \(X(x), \, 0 \leq x \leq T, \) є квадратично інтегрованим мартиновим процесом, то \(\mu(A) = \int_0^T 1_A(x) \, dX(x) \) є СМ в \(\mathbb{R} \). Аналогічним чином визначає СМ інтеграл для добових броунівським рухом \(B^H(x) \) при захищенні показника Хорста \(H > 1/2 \). Ще одним прикладом СМ є \(\sigma \)-алгебра, визначена на \(\sigma \)-алгебрі (див. [4]). Інші приклади, а також умови того, що рівність значень випадкового процесу з незалежними приростами породжує СМ, є в розділах 7 і 8 [1].

У [2] побудовано і вивчено інтеграл випадку \(\int_A g(x) \, d\mu(x), \, \text{де} \, g \) — випадкова величина, \(A \in B \). Його конструкція проводиться стандартно з використанням наближених простих функцій (Аналогічна будова відома в розділі 7 [1]). Відтак, що будь-яка обмежена випадкова \(g \) є інтегрованою за будь-якою \(\mu \). Для цього інтеграла має місце аналог теореми Лебера про мажоровану збіжність (див. твердження 7.1.1 [1] або наслідок 1.2 [2]).

Через \((t, x)\) ми будемо позначати скалярний добуток в \(\mathbb{R}^d \), \(\cdot \) — ескалівну норму, \(\hat{f} \) — перетворення Фур'є функції \(f \in L_1(\mathbb{R}^d, dx) \),

\[
\hat{f}(t) = \int_{\mathbb{R}^d} e^{-2\pi i(t,x)} \, f(x) \, dx.
\]

Властивості перетворення Фур'є, використані нині, в статті, можна знайти, наприклад, в [5].

Ми будемо вживати аналогічне перетворення для стохастичних функцій менш.

ОЗНАЧЕННЯ 2.2. Перетворенням Фур'є СМ \(\mu \) будемо називати випадкову функцію

\[
\hat{\mu}(t) = \int_{\mathbb{R}^d} e^{-2\pi i(t,x)} \, d\mu(x) := \int_{\mathbb{R}^d} \cos 2\pi(t,x) \, d\mu(x) - i \int_{\mathbb{R}^d} \sin 2\pi(t,x) \, d\mu(x), \quad t \in \mathbb{R}^d.
\]

Статистичні інтеграл, записані в (1), визначені для будь-якої \(\mu \), оськільки підінтегральні функції обмежені. Тому перетворення Фур'є є існує для будь-якої СМ на \(B \).

22. Інтеграл Рімана. Інтеграл від випадкової функції за дійсною мірою \(dx \) в \(\mathbb{R}^d \) будемо розглядати в сенсі Рімана. Докладно такий інтеграл досліджено в [3], ми накладаємо основні ознаки і навіть для нас твердження.

ОЗНАЧЕННЯ 2.3. Нехай \(M \subseteq \mathbb{R}^d \) — вимірна за Жорданом множина, \(\xi : M \times \Omega \to \mathbb{R} \) — вимірна випадкова функція. Будемо говорити, що \(\xi \) інтегрована на \(M \), якщо для будь-якої послідовності робіттів множини \(M = \bigcup_{1 \leq k \leq n} M_k, n \geq 1, \max_k \text{diam} M_k \to 0 \) при \(n \to \infty \), \(x_k \in M_k \), існує границя за ймовірністю інтегральних сум

\[
P \lim_{n \to \infty} \sum_{1 \leq k \leq n} \xi(x_k) m(M_k) := \int_M \xi(x) \, dx.
\]

Тут \(m \) позначає міру Жордана, в кожному робітті множини \(M_k, 1 \leq k \leq k_n \), вимір за Жорданом і перетинаються лише по своїх межах.
Ознакення 2.4. Нехай \(M \) — необмежена множина, та існує послідовність вимірних за Жорданом множини \(M^{(j)} \) \(j \) таких, що для кожного \(c \) для деякого \(j \) маємо \(M \cap \{ |x| \leq c \} \subseteq M^{(j)} \). Будемо говорити, що \(\xi \) інтегрована (у невласному сенсі) на \(M \), якщо \(\xi \) інтегрована на кожному \(M^{(j)} \), а також існує і не залежить від конкретних \(M^{(j)} \) гранична за ймовірністю

\[
P \lim_{j \to \infty} \int_{M^{(j)}} \xi(x) \, dx := \int_{M} \xi(x) \, dx.
\]

Теорема 2.1. (наслідок 4.1 [3]) Нехай \(h(x,t) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R} \) — вимірна неспівдова функція, інтегрована за Ріманом по \(dx \) на \(\mathbb{R}^d \) у невласному сенсі для кожного фіксованого \(t \), та \(|h(x,t)| \leq g(t) \), \(\int_{\mathbb{R}^d} |h(x,t)| \, dx \leq g_1(t) \), де \(g, g_1 : \mathbb{R}^d \to \mathbb{R} \) інтегровані на \(\mathbb{R}^d \) за \(d\mu(t) \). Тоді співінварність \(\phi(x) = \int_{\mathbb{R}^d} h(x,t) \, d\mu(t) \) інтегрована на \(\mathbb{R}^d \) у невласному сенсі, та

\[
\int_{\mathbb{R}^d} d\mu(t) \int_{\mathbb{R}^d} h(x,t) \, dx = \int_{\mathbb{R}^d} dx \int_{\mathbb{R}^d} h(x,t) \, dx.
\]

Очевидним чином, це твердження залежатиме від \(h \), ознакення очевидним чином переносяться на комплексноозначні \(\xi \).

3. Обереження перетворення Фур'є статистичного маршруту

Нехай \(D(\mathbb{R}^d) \) — множина всіх необмеженних диференційовних функцій \(\varphi : \mathbb{R}^d \to \mathbb{C} \) з компактним що."
В рівності (**) ми використали аналог теореми про макрокорону збіжності (твердження 7.1 [1]), в (***) — збіжність даного фундаментального роз'язку до дельта-функциї в $D' (\mathbb{R}^d)$. □

Замічання 3.1. Відмітимо, що нав'язність множинки $e^{-4\pi^2 t|t|^2}$, $\alpha > 0$, і взяття граничної при $\alpha \to 0+$ в (2) для нас є вважними, ми не можемо в (2) покласти $\alpha = 0$. При $\alpha = 0$ не існує макрокоротких в (4), а в (2) ми не можемо б гарантувати існування інтеграла $\int_{\mathbb{R}^d} e^{2\pi i (x,t)} \hat{\mu}(t) \, dt$.

Зв'язок $\hat{\mu}$ та μ також задають наступним твердженням.

Теорема 3.2. Для кожного обмеженої $f \in L_1 (\mathbb{R}^d, dx)$

$$\int_{\mathbb{R}^d} f(x) \mu(x) \, dx = \int_{\mathbb{R}^d} \hat{f}(x) \, d\mu(x).$$

Доведення. Оскільки функція $\hat{f} \text{ обмежена, вона інтегровна за } \mu, \text{ і ми маємо:}

$$\int_{\mathbb{R}^d} \hat{f}(t) \, d\mu(t) = \int_{\mathbb{R}^d} d\mu(t) \int_{\mathbb{R}^d} f(x)e^{-2\pi i (x,t)} \, dx
\overset{(*)}{=} \int_{\mathbb{R}^d} f(x) \, dx \int_{\mathbb{R}^d} e^{-2\pi i (t,x)} \, d\mu(t) = \int_{\mathbb{R}^d} f(x) \hat{\mu}(x) \, dx.$$

Тут в (**) ми використали теорему 2.1 з

$$g(t) = \sup |f|, \quad g_1 (t) = \int_{\mathbb{R}^d} |f(x)| \, dx.$$ □

4. Перетворення Фур'є та слабка збіжність стохастичних ми

Для звичайних випадкових величин добре відомо, що із збіжності характеристичних функцій випливає слабка збіжність відповідних розподілів. Аналог цього твердження для $\text{CM} \mu$ отримуємо тепер.

Через C_0 ми позначимо множину неперервних функцій $f : \mathbb{R}^d \to \mathbb{C}$ таких, що $f(x) \to 0, |x| \to \infty$.

Теорема 4.1. Нехай μ_n та μ — $\text{CM} \text{ на } B$, значення $\mu_n (A), A \in B, n \geq 1$, обмежені за ймовірністю. Тоді наступні твердження еквівалентні:

1) для кожної $f \in C_0$

$$\int_{\mathbb{R}^d} f \, d\mu_n \xrightarrow{P} \int_{\mathbb{R}^d} f \, d\mu, \quad n \to \infty;$$

2) для кожної $f \in C_0 \cap L_1(\mathbb{R}^d, dt)$

$$\int_{\mathbb{R}^d} f(t) \, d\mu_n(t) \, dt \xrightarrow{P} \int_{\mathbb{R}^d} f(t) \hat{\mu}(t) \, dt, \quad n \to \infty.$$ (6)

Доведення. Ми будемо вважати, що $\mu = 0$ (інакше замість μ_n ми можемо взяти $\mu_n = \mu$).

Нехай виконується 1). Для функцій f, що задовольняють умови пункту 2), за відомою із властивостями перетворення Фур'є, $f \in C_0$. За умовою 1), $\int_{\mathbb{R}^d} \hat{f}(x) \, d\mu_n (x) \xrightarrow{P} 0$, і з (5) отримуємо 2).

Тепер покажемо, що з 2) випливає 1). Нехай $C = \prod_{k=1}^{d} [-c_k, c_k], \ c_k > 0$, та $U = \prod_{k=1}^{d} [u_k, u_k], \ u_k < u_k, \ g_\epsilon (y) = \chi$ — цільність рівномірного розподілу на бруці C,

$$\psi_C (U, x) = \int_{U} g_\epsilon (x - y) \, dy = \lambda (U \cap (C + x)) \prod_{k=1}^{d} (2c_k).$$

□
(Тут λ позначає міру Лебєга в \mathbb{R}^d. Тоді $h(x) = \psi_c(U, x) / \prod_{k=1}^d (v_k - u_k)$ є згорткою
швидкостей рівномірних розподілів на C та U, $0 \leq \psi_c(U, x) \leq 1$. Перетворення
Фур'є цієї згортки дещо важче до зрозуміння, але можна такшо
\begin{equation}
\hat{h}(t) = \prod_{k=1}^d \frac{e^{-2\pi i t u_k} - e^{-2\pi i t v_k}}{2\pi i t_k (v_k - u_k)} \sin 2\pi c_k t_k \frac{1}{2\pi c_k t_k}.
\end{equation}
Маємо, що
\begin{equation}
|\hat{h}(t)| \leq C \prod_{k=1}^d \min \left\{ \frac{2}{|v_k - u_k| t_k^2} \right\} \in L_1(\mathbb{R}^d, dt).
\end{equation}
(C позначає константу, точні значення якої незважаючи.) Отже, для $\hat{h}(t)$ виконуються
умови поточкового обернення перетворення Фур'є, а тому
\begin{equation}
\psi_c(U, x) = \prod_{k=1}^d (v_k - u_k) \int_{\mathbb{R}^d} e^{2\pi i (x, t) \hat{h}(t)} dt
\end{equation}
\begin{equation}
= (4\pi^2)^{-d} \prod_{k=1}^d (1/c_k) \int_{\mathbb{R}^d} e^{2\pi i (x, t)} \prod_{k=1}^d \left(e^{-2\pi i t u_k} - e^{-2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k dt.
\end{equation}
Оскільки $\psi_c(U, x)$ обмежена, ми можемо розглянути інтеграл
\begin{equation}
\int_{\mathbb{R}^d} \psi_c(U, x) d\mu_n(x)
\end{equation}
\begin{equation}
= C \int_{\mathbb{R}^d} d\mu_n(x) \int_{\mathbb{R}^d} e^{2\pi i (x, t)} \prod_{k=1}^d \left(e^{-2\pi i t u_k} - e^{-2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k dt
\end{equation}
\begin{equation}
= (\star) C \int_{\mathbb{R}^d} dt \int_{\mathbb{R}^d} e^{2\pi i (x, t)} \prod_{k=1}^d \left(e^{-2\pi i t u_k} - e^{-2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k d\mu_n(x)
\end{equation}
\begin{equation}
= C \int_{\mathbb{R}^d} \prod_{k=1}^d \left(e^{-2\pi i t u_k} - e^{-2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k dt \int_{\mathbb{R}^d} e^{2\pi i (x, t)} d\mu_n(x)
\end{equation}
\begin{equation}
= C \int_{\mathbb{R}^d} \tilde{\mu}_n(-t) \prod_{k=1}^d \left(e^{-2\pi i t u_k} - e^{-2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k dt
\end{equation}
\begin{equation}
\overset{\star}{=} C \int_{\mathbb{R}^d} \tilde{\mu}_n(t) \prod_{k=1}^d \left(e^{2\pi i t u_k} - e^{2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k dt.
\end{equation}
Тут в (\star) ми використали теорему 2.1 з
\begin{equation}
g(t) = (2\pi)^{2d} \prod_{k=1}^d \min \left\{ \frac{1}{|v_k - u_k|}, 2|t_k|^{-2} \right\}, \quad g_1(t) = \psi_c(U, x) \leq 1.
\end{equation}
Тепер ми беремо твердження 2) для
\begin{equation}
f(t) = \prod_{k=1}^d \left(e^{2\pi i t u_k} - e^{2\pi i t v_k} \right) t_k^{-2} \sin 2\pi c_k t_k, \quad |f(t)| \leq (2\pi)^{2d} \prod_{k=1}^d \min \left\{ c_k |v_k - u_k|, 2|t_k|^{-2} \right\},
\end{equation}
tут $f \in C_0 \cap L_1(\mathbb{R}^d, dt)$. Отримаємо, що для будь-яких C, U
\begin{equation}
\int_{\mathbb{R}^d} \psi_c(U, x) d\mu_n(x) \xrightarrow{\text{P}} 0, \quad n \to \infty.
\end{equation}
Легко бачити, що \(\psi_c(U, x) = 1 \) для \(u_k + c_k \leq x_k \leq v_k - c_k, \psi_c(U, x) = 0 \) для \(u_k - c_k \geq x_k \) та \(x_k \geq v_k + c_k \), і завжди \(0 \leq \psi_c(U, x) \leq 1 \). Свійствами лінійних комбінацій таких функцій легко можна рівномірно наблизити будь-яку \(f \in C_0 \).

Лема 1.2 [2] дос. що для виміри хвиляні \(h, |h(x)| \leq K \), виникається нерівність

\[
\left\| \int_A h \, d\mu_a \right\| \leq 16 \sup_{B \subset A} \|K\mu_a(B)\|
\]

(тут ми використали нерівність \(\|\xi\| = \sup\{\delta : P(|\xi| > \delta)\} \). З рівномірної обмеженості значень \(\mu_a \) випливає, що відповідні лінійні комбінації \(\int_{R^d} \psi_c(U, x) \, d\mu_a(x) \) наближаються за ймовірністю \(\int_{R^d} f \, d\mu_a \) рівномірно за \(n \). Так ми отримали 1).

5. Збіжність розв'язків рівняння теплопровідності

Як приклад застосування теореми 4.1, розглянемо збіжність розв'язків стохастичного рівняння теплопровідності для розмірності \(d = 1 \):

\[
u(x, t) = a^2 \frac{\partial^2 u(x, t)}{\partial x^2} \, dt + \sigma(x, t) \, d\mu(x), \quad u(x, 0) = u_0(x), \quad (x, t) \in \mathbb{R} \times [0, T].
\]

Ми беремо розв'язок цього рівняння в м'якому сенсі:

\[
u(x, t) = \int_\mathbb{R} p(x - y, t) u_0(y) \, dy + \int_\mathbb{R} d\mu(y) \int_0^t p(x - y, t - s) \sigma(y, s) \, ds,
\]

де \(p(x, t) = (4a^2\pi t)^{-1/2} e^{-x^2/4a^2t} \).

Будемо накладати наступні умови:

A1. \(u_0(y) = u_0(y, \omega) : \mathbb{R} \times \Omega \rightarrow \mathbb{R} \) вимірюється і при кожному фіксованому \(\omega \) обмежено.

A2. \(\sigma(y, s) : \mathbb{R} \times [0, T] \rightarrow \mathbb{R} \) вимірюється, обмежена і неперервна за \(y \) при кожному фіксованому \(s \).

Таке рівняння докладно розглянуто в [6].

Теорема 5.1. Нехай виконуються умови A1 i A2, \(\mu_\infty \) та \(\mu = CM \) на \(\mathcal{B} \), значення \(\mu_n(A), A \in \mathcal{B}, n \geq 1 \), обмежені за ймовірністю, виникають (6),

\[
u_n(x, t) = \int_\mathbb{R} p(x - y, t) u_0(y) \, dy + \int_\mathbb{R} d\mu_n(y) \int_0^t p(x - y, t - s) \sigma(y, s) \, ds.
\]

Тоді для будь-якого \((x, t) \in \mathbb{R} \times [0, T] \)

\[
u_n(x, t) \xrightarrow{P} \nu(x, t), \quad n \rightarrow \infty,
\]

де \(\nu(x, t) \) визначено в (7).

Доведення. Для фіксованих \((x, t) \) розглянемо

\[
f(y) = \int_0^t p(x - y, t - s) \sigma(y, s) \, ds.
\]

Із стандартної теореми про мажоровану збіжність випливає, що \(f \in C_0 \). Використовуючи теореми 4.1 для даної \(f \) значення досить. □

Література

3. V. Radchenko, Riemann integral of a random function and the parabolic equation with a general stochastic measure, Теор. Імовірн. та матем. стат. 87 (2012), 163–175.

Кафедра матема́тичного ана́лізу, Націона́льний університе́т і́мені Тара́са Ши́ренка, Ки́їв 01601, Украї́на
Адреса електронної пошти: vradchenko@univ.kiev.ua

Кафедра математичного аналізу, Національний університет імені Тараса Шевченка, Київ 01601, Україна
Адреса електронної пошти: valentinasavych@mail.ru

Надійшла 28/04/2016